n - \bar{n} Oscillations

Useful complement to nucleon decay
Potential connections to v mass
Implications for leptogenesis
Color sextets on TeV scale

Rate suppressed in bound neutrons: free neutrons cleaner test, but matrix elements uncertain

Lifetime target: 10¹⁰ - 10¹¹ s

n - \(\bar{n}\) Oscillations Work Ahead Go beyond a few GUT examples How widespread is impact? Network of implications

Rate suppression in bound neutrons Matrix elements on lattice, chiral limit

What is a worthy demonstrator? Broader cold-neutron program?

Benchmark goal for ruling out new physics scenarios

No NNbar oscillation till $\sim 10^{10} - 10^{11}$ sec.

Will rule out a class of $SU(2)xSU(2)xSU(4)_C$ models for post sphaleron baryogenesis for $v_{BL} < 30-100$ TeV.

Will rule out a class of SO(10) models for neutrino masses that predicted recently observed large θ_{13} if it is to explain the origin of matter.

THANK YOU!!

NN-bar oscillation- gold mine of new physics info— 10¹¹ sec. benchmark goal

Complementary info on Neutrino mass physics

Possible New understanding
Of Origin of matter

No SUSY GUT

New particles
At LHC

N-N-bar osc. search and discovery

Strange Nucl. decay modes

Improvement of neutron Technology

Most stringent
CPT Test, testing
DM models

Summary and Conclusions

Post–sphaleron baryogenesis predicts observable $n-\overline{n}$ oscillations

Colored scalars at TeV scale should be accessible to LHC

New GUT scale (B-L)—genesis proposed which is sphaleron—proof

Both models predict

$$au(n-\overline{n}) \sim (10^9-10^{11}) \text{ sec}$$

 $n-\overline{n}$ oscillation experiments can probe a class of theories which explains the origin of matter in the universe

Summary

- We explore extensions of the MSSM in which TeV scale vector-like multiplets can mediate observable $\mathbf{n}-\overline{\mathbf{n}}$ oscillations.
- In this scenario we can have vector-like diquark with mass around a TeV scale.
- For plausible values of the diquark-quark-quark couplings can be produced at the LHC and detected through its decay into a top quark and a jet.

Conclusions

- origin of matter: one of the great mysteries in particle physics and cosmology
- leptogenesis: an appealing baryogenesis mechanism connected to neutrino physics
- various leptogenesis mechanisms:
 - standard leptogenesis: gravitino problem, incompatible with SUSY
 - resonance leptogenesis
 - Dirac leptogenesis
- While there is no model-independent way to test leptogenesis, searches at neutrino experiments (leptonic CPV, neutrino-less double beta decay) can provide supports for/distinguish among the mechanisms
- neutron-antineutron oscillation: complementarity test
 - if observed ⇒ low scale leptogenesis scenarios preferred

Intro

Rabi Mohapatra presented theoretical motivations for neutron-antineutron oscillations.

 $\Delta B = 2$ analog of the search for Majorana neutrino, $\Delta L = 2$.

Experimental limits on stability of nuclei set the range of interest for the free neutron oscillation time $\tau_{n\bar{n}}$.

Super-K (2011)
$$au(^{16}O) > 1.97 \times 10^{32} \text{ yr}$$
 (Ed Kearns' talk)

Theory, Friedman, Gal (2008), relates it to $\tau_{n\bar{n}}$,

$$au_A = R \, au_{nar{n}}^2 \qquad R = 5 imes 10^{22} \; s^{-1} \qquad au_{nar{n}} > 3.53 imes 10^8 \; ext{s}$$

Free neutron ILL experiment (1994)

$$au_{n\bar{n}} > 0.86 \times 10^8 \text{ s}$$

Where Lattice Can Help

- * Is BSM running non-perturbative?
 - Model-dependent (assume pert. models for now)
- * Is QCD running non-perturbative?
 - Should be checked (pert. running reasonable)
- What is neutron-antineutron matrix element?
 - Inherently non-perturbative question
- * What is effect in nuclei?
 - Very interesting, VERY hard question

PROTON DECAY

- ** Proton is a topological non-trivial configuration of the pion field (Skyrmion)
- * Decay of the proton is protected by topology